Empirical Characteristic Functions‐Based Estimation and Distance Correlation for Locally Stationary Processes
نویسندگان
چکیده
منابع مشابه
Empirical Likelihood Approach for Non-Gaussian Locally Stationary Processes
An application of empirical likelihood method to non-Gaussian locally stationary processes is presented. Based on the central limit theorem for locally stationary processes, we calculate the asymptotic distribution of empirical likelihood ratio statistics. It is shown that empirical likelihood method enables us to make inference on various important indices in time series analysis. Furthermore,...
متن کاملMinimum distance estimation of stationary and non-stationary ARFIMA processes
A new parametric minimum distance time-domain estimator for ARFIMA processes is introduced in this paper. The proposed estimator minimizes the sum of squared correlations of residuals obtained after filtering a series through ARFIMA parameters. The estimator is easy to compute and is consistent and asymptotically normally distributed for fractionally integrated (FI) processes with an integratio...
متن کاملEmpirical spectral processes for locally stationary time series
A time-varying empirical spectral process indexed by classes of functions is defined for locally stationary time series. We derive weak convergence in a function space, and prove a maximal exponential inequality and a Glivenko–Cantelli-type convergence result. The results use conditions based on the metric entropy of the index class. In contrast to related earlier work, no Gaussian assumption i...
متن کاملEstimation for Non-Gaussian Locally Stationary Processes with Empirical Likelihood Method
An application of the empirical likelihood method to non-Gaussian locally stationary processes is presented. Based on the central limit theorem for locally stationary processes, we give the asymptotic distributions of the maximum empirical likelihood estimator and the empirical likelihood ratio statistics, respectively. It is shown that the empirical likelihood method enables us to make inferen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Time Series Analysis
سال: 2019
ISSN: 0143-9782,1467-9892
DOI: 10.1111/jtsa.12497